4-3 Solving recurrences with a change of variables
Sometimes, a little algebraic manipulation can make an unknown recurrence similar to one you have seen before. Let’s solve the recurrence
T(n)=2T(n)+Θ(lgn) (4.25)
by using the change-of-variables method.
a. Define m=lgn and S(m)=T(2m). Rewrite recurrence (4.25) in terms of m and S(m).
b. Solve your recurrence for S(m).
c. Use your solution for S(m) to conclude that T(n)=Θ(lgnlglgn).
d. Sketch the recursion tree for recurrence (4.25), and use it to explain intuitively why the solution is T(n)=Θ(lgnlglgn).
Solve the following recurrences by changing variables:
e. T(n)=2T(n)+Θ(1).
f. T(n)=3T(3n)+Θ(n).
a
S(m)=T(2m)=2T(2m)+Θ(m)=2T(2m/2)+Θ(m)=2S(m/2)+Θ(m)
b
mlogba=mf(m)=m=Θ(mlogba)S(m)=Θ(mlgm)
c
T(n)=S(lgn)=Θ(lgnlglgn)
d

depth:lglgn+1, leaves: 2lglgn
The total cost over all nodes at depth i,for i=0,1,…,lglgn−1 is 2i⋅2i1Θ(lgn)=Θ(lgn)
T(n)=2lglgnΘ(1)+i=0∑lglgn−1Θ(lgn)=Θ(lgn)+lglgnΘ(lgn)=Θ(lgnlglgn)
e
depth:lglgn+1, leaves: 2lglgn
The total cost over all nodes at depth i,for i=0,1,…,lglgn−1 is 2i⋅Θ(1)=Θ(2i)
T(n)=2lglgnΘ(1)+i=0∑lglgn−12iΘ(1)=Θ(lgn)+(2lglgn−1)Θ(1)=Θ(lgn)
f
S(m)=T(3m)=3T(3m/3)+Θ(3m)=3S(m/3)+Θ(3m).
mlogba=mlog33=mf(m)=3m=Ω(m2+logba)3f(m/3)=3⋅3m/3≤(1/3)f(m)S(m)=Θ(f(m))=Θ(3m)T(n)=S(log3n)=Θ(n)